
The LA Grid Meta-Scheduling Project

Objective

• Support interoperation and cooperation of network of 

distributed schedulers

Strategic Importance

• Enhance usability: common job control language to different 

resource domains

• Drive interoperability of schedulers: proprietary and open-

source

• Provide integrated scheduling views for enterprise and grid 

customers

Technology Benefits

• Meet various user service objectives: policy driven (e.g. 

capability based, response time based)

• Maximize resource availability to users with transparency of 

locations

• Optimize utilization of resources across domains

I: Objectives

Connection API
• Establish and terminate connections 

between domain meta-schedulers. 
• Negotiate roles and connection parameters 

using the interface

• Provider roles: provide resources for job 
execution; is responsible of sending out 
resource information

• Consumer roles:  use resources provided 

by providers; route job request to 
providers. 

• Send heart beats: exchanged to guarantee 

the healthy state of the connection. 

Resource exchange API
• Exchange the scheduling capability and 

capacity of the domain controlled by the 
meta-scheduler
• Exchanged information can be a 

complete or incremental set of data 

Job management API
• Submit, re-route and monitor job executions 

across schedulers 

IV: System architecture
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Centralized model: 
• Meta-scheduling has direct information of all 

resources available at the various institutes of the 
virtual organization 

• Responsible for scheduling job execution on all 
resources

• Local schedulers at individual institutes will act as job 
dispatchers. 

Hierarchical model: 
• Meta-scheduling has no direct access to resources in 

the virtual organization
• Assign jobs to the local schedulers of the various 

institutes
• Local schedulers will match jobs to resources. 
Distributed model: 
• Multiple local schedulers with a companion meta-

scheduling functional entity
• Local schedulers can submit jobs to each others 

through their respective meta-scheduling functional 
entities. 
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II: P2P Meta scheduling
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III: Related Work
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C P: Job flow is from C to P, resource info flow is from P to C
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Some key aspects of the 

Metascheduler Protocol:

• Heterogeneous sites; inner structure of 

domains doesn’t effect the functionality of 

the protocol.

• Site autonomy; each metascheduler is 

responsible from its own site, and offers 

as much information as it wants to other 

sites.

• Peer-to-peer; no centralized body, no 

single-point of failure.
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1. User Client takes the job request 

from the local User. This request is 
forwarded to Global Scheduling 

Manager (GSM).

2. GSM queries the Resource 

Manager (RM) for resources. RM 

stores information about local and 

remote resources. 
3. If available resources are found 

on local site, job request is 

forwarded to Site Scheduling 

Manager (SSM). 

4. SSM leverages Gridway

functionality to submit the job to the 
Grid Middleware (Globus).

5. If there are not available 

resources locally, job request is sent 

to a remote site through WS Client

6. Alternatively, job requests from 

other peers can be received from the 
WS layer.
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1. The eNANOS Client forwards the user requests to the eNANOS Broker.

2. The remote request from the P2P infrastructure are managed by regular WS (Axis2) acting 

as a wrapper to a GT4 service that implements the LAGrid APIs and protocols. Connections 

and other data is stored in Resource Properties.

3. Jobs and resources (aggregated data) obtained from local and remote sites are used in the 

eNANOS Resource Broker scheduling. Jobs are executed under the local domain through 
Globus services, or are forwarded to other meta-scheduler.

4. eNANOS provide its resources data, forwards jobs and performs other operations (such as 

sending heart beats) through a WS Client.
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Ref: “Distributed job scheduling on computational grid using multiple 
Simultaneous Requests” by Vijay Subramani, Rajkumar Kettimuthu, 
Srividya Srinivasan, and P. Sadayappan
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