
The LA Grid Meta-Scheduling Project

Objective

• Support interoperation and cooperation of network of

distributed schedulers

Strategic Importance

• Enhance usability: common job control language to different

resource domains

• Drive interoperability of schedulers: proprietary and open-

source

• Provide integrated scheduling views for enterprise and grid

customers

Technology Benefits

• Meet various user service objectives: policy driven (e.g.

capability based, response time based)

• Maximize resource availability to users with transparency of

locations

• Optimize utilization of resources across domains

I: Objectives

Connection API
• Establish and terminate connections

between domain meta-schedulers.
• Negotiate roles and connection parameters

using the interface

• Provider roles: provide resources for job
execution; is responsible of sending out
resource information

• Consumer roles: use resources provided

by providers; route job request to
providers.

• Send heart beats: exchanged to guarantee

the healthy state of the connection.

Resource exchange API
• Exchange the scheduling capability and

capacity of the domain controlled by the
meta-scheduler
• Exchanged information can be a

complete or incremental set of data

Job management API
• Submit, re-route and monitor job executions

across schedulers

IV: System architecture

Job Mgmt API

Connection API

Resource exchange API

Job
Management

Resource
Management

Connection
Management

FIU

Centralized model:
• Meta-scheduling has direct information of all

resources available at the various institutes of the
virtual organization

• Responsible for scheduling job execution on all
resources

• Local schedulers at individual institutes will act as job
dispatchers.

Hierarchical model:
• Meta-scheduling has no direct access to resources in

the virtual organization
• Assign jobs to the local schedulers of the various

institutes
• Local schedulers will match jobs to resources.
Distributed model:
• Multiple local schedulers with a companion meta-

scheduling functional entity
• Local schedulers can submit jobs to each others

through their respective meta-scheduling functional
entities.

Meta-scheduler

local
dispatcher

local
dispatcher

local
dispatcher

Meta-scheduler

local
scheduler

local
scheduler

local
scheduler

Meta-scheduler

local-scheduler

Meta-scheduler

local-scheduler

Meta-scheduler

local-scheduler

Job flow Info flow

Peer-to-peer

II: P2P Meta scheduling

TDWB

IBM-USA

TDWB

IBM-India

IBM

Fork

BSCgrid

BSC

SGE

FIU-GCB

Fork

LAGrid

FIU

Meta-
Scheduler

Meta-
Scheduler

Meta-
Scheduler

Peer-to-peer

Peer-to-peer

III: Related Work

Team: Liana Fong1, S. Masoud Sadjadi2, Yanbin Liu1, Ivan Rodero3, David Villegas2, Selim

Kalayci2, Norman Bobroff1, and Julita Corbalan3

1: IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

2: Florida International University, Miami, FL 33199
3: Barcelona Supercomputing Center, Barcelona, Spain

C P: Job flow is from C to P, resource info flow is from P to C

Job
Management

Resource
Management

Connection
Management

IBM

JSDL

User

Client

JSDL

GCB

Cluster

LAGrid

Cluster

SGE Fork

Some key aspects of the

Metascheduler Protocol:

• Heterogeneous sites; inner structure of

domains doesn’t effect the functionality of

the protocol.

• Site autonomy; each metascheduler is

responsible from its own site, and offers

as much information as it wants to other

sites.

• Peer-to-peer; no centralized body, no

single-point of failure.

BSC

BSCGrid

Cluster

Fork

CEPBA

Resources

LoadLeveler

JSDL

GT4 Container

eNANOS

Resource

Broker

LAGrid RP

WS Client
LAGrid

Plugin

Apache
Axis2 Server WS Interface

Command-line

Java API

eNANOS
Client

LL/Fork

CEPBA

WS Client

Site scheduling manager

Global

Scheduling

manager

Resource

manager

Globus Globus

Globus

Globus

Job

Management

Resource

Management

Connection

Management

Gridway

1. User Client takes the job request

from the local User. This request is
forwarded to Global Scheduling

Manager (GSM).

2. GSM queries the Resource

Manager (RM) for resources. RM

stores information about local and

remote resources.
3. If available resources are found

on local site, job request is

forwarded to Site Scheduling

Manager (SSM).

4. SSM leverages Gridway

functionality to submit the job to the
Grid Middleware (Globus).

5. If there are not available

resources locally, job request is sent

to a remote site through WS Client

6. Alternatively, job requests from

other peers can be received from the
WS layer.

1. User Client takes the job request

from the local User. This request is
forwarded to Global Scheduling

Manager (GSM).

2. GSM queries the Resource

Manager (RM) for resources. RM

stores information about local and

remote resources.
3. If available resources are found

on local site, job request is

forwarded to Site Scheduling

Manager (SSM).

4. SSM leverages Gridway

functionality to submit the job to the
Grid Middleware (Globus).

5. If there are not available

resources locally, job request is sent

to a remote site through WS Client

6. Alternatively, job requests from

other peers can be received from the
WS layer.

1. The eNANOS Client forwards the user requests to the eNANOS Broker.

2. The remote request from the P2P infrastructure are managed by regular WS (Axis2) acting

as a wrapper to a GT4 service that implements the LAGrid APIs and protocols. Connections

and other data is stored in Resource Properties.

3. Jobs and resources (aggregated data) obtained from local and remote sites are used in the

eNANOS Resource Broker scheduling. Jobs are executed under the local domain through
Globus services, or are forwarded to other meta-scheduler.

4. eNANOS provide its resources data, forwards jobs and performs other operations (such as

sending heart beats) through a WS Client.

1. The eNANOS Client forwards the user requests to the eNANOS Broker.

2. The remote request from the P2P infrastructure are managed by regular WS (Axis2) acting

as a wrapper to a GT4 service that implements the LAGrid APIs and protocols. Connections

and other data is stored in Resource Properties.

3. Jobs and resources (aggregated data) obtained from local and remote sites are used in the

eNANOS Resource Broker scheduling. Jobs are executed under the local domain through
Globus services, or are forwarded to other meta-scheduler.

4. eNANOS provide its resources data, forwards jobs and performs other operations (such as

sending heart beats) through a WS Client.

1.
1.

Command-ine

Web Console

Ref: “Distributed job scheduling on computational grid using multiple
Simultaneous Requests” by Vijay Subramani, Rajkumar Kettimuthu,
Srividya Srinivasan, and P. Sadayappan

IBM Confidential

IBM Confidential

IBM Confidential

